Structure and Transesterification Reaction of Methyl 3-(Phenyldihalostannyl)propionates

Lai Jin TIAN¹*, Qing Sen YU², Li Ping ZHANG¹, Yu Xi SUN¹

¹Department of Chemistry, Qufu Normal University, Qufu 273165 ²Department of Chemistry, Zhejiang University, Hangzhou 310027

Abstract: The title compounds, $PhX_2SnCH_2CH_2CO_2Me$ (X = Cl, **1a**; Br, **1b**; I, **1c**), readily underwent transesterification into the corresponding analogues, $PhX_2SnCH_2CH_2CO_2R$ when reacted with an alcohol ROH. The structural features of these compounds were described, and the possible mechanism of the novel transesterification was suggested.

Keywords: Organotin dihalide, 3-(phenyldihalostannyl)propionate, transesterification reaction, crystal structure.

Transesterification is a very important reaction in organic synthesis as well as in industry. However, it is very often catalyzed for a better efficiency, higher reaction rates and milder conditions¹. Organotin compounds as organotin oxides, alkoxides, carboxylates and tetraorganodistannoxanes are already used as transesterification catalysts¹⁻³, however, no attention was paid to transestrifications of 3-(phenyldihalostannyl)propionates in the literature. In this paper, we report the structures and transesterifications of **1a-c**.

The compounds **1a-c** obtained by the reaction of methyl 3-triphenylstannylpropionate with YX (ICl, Br₂, or I₂) in 1:2 molar ratio at room temperature readily converted into the corresponding 3-(phenyldihalostannyl)propionate analogues with yields of 64-90% when refluxed in an alcohol ROH. The results were listed in **Table** 1^4 .

 $\begin{array}{l} Ph_3SnCH_2CH_2CO_2Me+2YX \rightarrow PhX_2SnCH_2CH_2CO_2Me+2PhY\\ PhX_2SnCH_2CH_2CO_2Me+ROH \rightarrow PhX_2SnCH_2CH_2CO_2R+MeOH\\ X=Cl, \textbf{a}; Br, \textbf{b}; I, \textbf{c}. Y=I, Br. R=Me, \textbf{1}; Et, \textbf{2}; n-Pr, \textbf{3}; i-Pr, \textbf{4}. \end{array}$

Table 1 The yield (%) and melting point (°C) of the compounds 1a-c, 2a-c, 3a-c, 4a-c

No.	mp °C	yield %	No.	mp °C	yield %	No.	mp °C	yield %
1a	121-2	79.3	2b	84-5	78.6	3c	61-2	77.3
1b	118-9	69.2	2c	70-1	89.6	4a	137-8	67.2
1c	77-8	67.4	3a	62-4	87.2	4b	102-3	70.4
2a	104-6	90.3	3b	50-1	74.5	4c	104-5	64.4

* E-mail: laijintian@sohu.com

Lai Jin TIAN *et al*.

Compared with v (C=O) (~1730m⁻¹) of a free ester group, the v (C=O) (~1650 cm⁻¹) in these compounds indicate that the carbonyl oxygen atom is coordinated intramolecularly to the tin atom⁵. The δ (¹H and ¹³C) values of C=O and OCH_n (n = 1, 2, 3) in these compounds show a downfield shift relative to those of the fatty acid ester because the coordination of carbonyl to tin causes the deshielding of COOCH_n. The results of X-ray single crystal diffraction of **1a** and **1b** are completely in agreement with the spectral analysis (see **Figure 1**)⁶. The compounds **1a** and **1b** contain a five-membered chelate ring formed *via* carbonyl oxygen to tin coordination (the Sn–O bond length is 2.432(3) Å for**1a** and 2.407(4) Å for **1b**, respectively.). The geometry about tin atom is a distorted trigonal bipyramid with two carbons (C1 and C5) and a halogen in equatorial sites and another halogen and carbonyl oxygen in axial positions.

We attributed the occurrence of the novel transesterification to the intramolecular Lewis acid catalysis by the electrophilic SnX_2 group (see **Scheme 1**). The coordination of the ester carbonyl to tin atom (C=O→Sn) polarized the carbonyl bond, thereby making the carbonyl carbon more susceptible to attack by a nucleophilic reagent alcohol to form tetrahedral intermediate.

Transesterification Reaction of Methyl 3-(Phenyldihalostannyl)propionates

Scheme 1

The reaction with better yields, higher rate and easier operation provides a convenient way for preparing 3-(phenyldihalostannyl)propionates.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 20173050) and Natural Science Foundation of Shandong Province (No. Z2002F01).

References and Notes

- 1. J. Otera, Chem. Rev., 1993, 93, 1449.
- 2. Y. Lu, Q. L. Xie, Chin. Synth. Chem., 2001, 9, 477.
- 3. B. Jousseaume, C. Laporte, M. C. Rascle, et al., Chem. Commun., 2003, 1428.
- 4. Selected analytical and spectral data: Compound 2a, Anal. Calcd. for C₁₁H₁₄Cl₂O₂Sn: C, 35.92, H, 3.84. Found: C, 35.89, H, 3.62%. IR (KBr) v: 1652 (C = O), 1234 (C–O) cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ ppm): 1.34 (t, 3H, *J* = 7.1 Hz, CH₃), 1.97 (t, 2H, *J* = 7.5 Hz, *J*(^{119/117}Sn⁻¹H) = 84.8/81.5 Hz, CH₂Sn), 2.94 (t, 2H, *J* = 7.5 Hz, *J*(^{119/117}Sn⁻¹H) = 140.9/133.3 Hz, CH₂CO), 4.37 (q, 2H, *J* = 7.2 Hz, OCH₂), 7.45-7.52 (m, 3H, *p*-H and *m*-H in ph), 7.91-7.93 (m, 2H, *J*(^{119/117}Sn⁻¹H) = 88.0 Hz, *o*-H in ph). ¹³C NMR (125 MHz, CDCl₃, δ ppm): 14.20 (CH₃), 22.34 (*J*(^{119/117}Sn⁻¹³C) = 648.0/619.6 Hz,CH₂Sn), 29.61 (*J*(¹¹⁹Sn⁻¹³C) = 49.8 Hz, CH₂CO), 64.66 (OCH₂), 129.23 (*J*(¹¹⁹Sn⁻¹³C) = 89.2 Hz, *m*-C in ph), 131.06 (*J*(¹¹⁹Sn⁻¹³C) = 17.9 Hz, *p*-C in ph), 135.71 (*J*(¹¹⁹Sn⁻¹³C) = 63.3 Hz, *o*-C in ph), 141.17 (*i*-C in ph), 181.37 (CO₂).
- 5. D. Maughan, J. L. Wardell, J. W. Burly, J. Organomet. Chem., 1981, 212, 59.
- 6. Crystal structure determinations of **1a** and **1b**: Intensity data were collected at 293 K on a Smart CCD diffractometer. The crystal data were as follows: **1a**, $C_{10}H_{12}Cl_2O_2Sn$, Mr = 353.79, Monoclinic, Space group $P2_1/n$, a = 8.4829(17), b = 13.629(3), c = 11.744(2) Å, $\beta = 109.694(2)^\circ$, V = 1278.3(4) Å³, Z = 4, R = 0.0359, wR = 0.0856. **1b**, $C_{10}H_{12}Br_2O_2Sn$, Mr = 442.71, Monoclinic, Space group $P2_1/n$, a = 11.025(4), b = 10.853(4), c = 11.335(4) Å, $\beta = 104.129(4)^\circ$, V = 1315.1(7) Å³, Z = 4, R = 0.0303, wR = 0.0702. The final coordinates, bond lengths and angles of **1a** and **1b** have been deposited in the editorial office of CCL.

Received 27 Augest, 2004